Interpatient ECG Arrhythmia Detection by Residual Attention CNN

Author:

Xu Pengyao1ORCID,Liu Hui1,Xie Xiaoyun1,Zhou Shuwang12,Shu Minglei1ORCID,Wang Yinglong1ORCID

Affiliation:

1. Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The precise identification of arrhythmia is critical in electrocardiogram (ECG) research. Many automatic classification methods have been suggested so far. However, efficient and accurate classification is still a challenge due to the limited feature extraction and model generalization ability. We integrate attention mechanism and residual skip connection into the U-Net (RA-UNET); besides, a skip connection between the RA-UNET and a residual block is executed as a residual attention convolutional neural network (RA-CNN) for accurate classification. The model was evaluated using the MIT-BIH arrhythmia database and achieved an accuracy of 98.5% and F 1 scores for the classes S and V of 82.8% and 91.7%, respectively, which is far superior to other approaches.

Funder

Major Research Plan of Shandong Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3