Research on Subgrade Differential Settlement Control Standard and Treatment Technology Based on Driving Comfort

Author:

Wang Xuancang1ORCID,Ding Longting1ORCID,Gao Wenze1ORCID,Zhang Mengyuan1ORCID,Fu Linjie2ORCID

Affiliation:

1. School of Highway, Chang’ an University, Xi’ an 710064, China

2. Tianjin Municipal Engineering Design and Research Institute, Tianjin 300392, China

Abstract

At present, the geogrid is commonly used to treat the differential settlement of the subgrade at the joint of the filling and excavation effectively. In order to further improve the utilization rate of geogrid in the treatment of subgrade, the driving comfort index was proposed innovatively to control the subgrade differential settlement. Based on the human-vehicle-road coupling system model, the influence of subgrade differential settlement area, subsidence value, and vehicle speed on the maximum vertical acceleration of the human body was analyzed. The correlation between the vertical acceleration of the human body under different vehicle speeds and the differential settlement value was obtained through multiple regression calculations, and the subgrade differential settlement control standard based on driving comfort was proposed. By establishing the finite element model of the cut to fill subgrade, the characteristics of differential settlement at the top surface of the subgrade under different geogrid laying positions, densities, and lengths were calculated and analyzed. In addition, the differential settlement layout scheme of the geogrid disposal subgrade based on driving comfort was proposed, and the effectiveness of the scheme was verified by experiments. The results show that the position and length of the grid are the main factors affecting the treatment effect of the vertical and horizontal cut to fill subgrade. The proposed layout scheme can effectively control the differential settlement of the subgrade and raise the utilization rate of the geogrid. The research results can provide theoretical value and reference for the laying of geogrid in mountainous roads.

Funder

Gansu Province Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3