Spatial Spread of Tuberculosis through Neighborhoods Segregated by Socioeconomic Position: A Stochastic Automata Model

Author:

Rehkopf David1,Furumoto-Dawson Alice2,Kiszewski Anthony3ORCID,Awerbuch-Friedlander Tamara4

Affiliation:

1. Department of Medicine, School of Medicine, Stanford University, Medical School Office Building, 251 Campus Drive, Room X3c46, MC5411, Stanford, CA 94305, USA

2. Program on the Global Environment, The University of Chicago, 5828 S. University Avenue, Pick 101, Chicago, IL 60637, USA

3. Department of Natural and Applied Sciences, Bentley University, 175 Forest Street, Waltham, MA 02452, USA

4. Department of Global Health and Population, Harvard School of Public Health, 665 Huntington Avenue, Room 1219, Boston, MA 02115, USA

Abstract

Transmission of the agent of tuberculosis,Mycobacterium tuberculosis, is dependent on social context. A discrete spatial model representing neighborhoods segregated by levels of crowding and immunocompetence is constructed and used to evaluate prevention strategies, based on a number of assumptions about the spatial dynamics of tuberculosis. A cellular automata model is used to (a) construct neighborhoods of different densities, (b) model stochastically local interactions among individuals, and (c) model the spread of tuberculosis within and across neighborhoods over time. Since infected people may become progressively sick but also heal through treatment, the transition among stages was modeled with transition probabilities. A moderate level of successful treatment (40%) dramatically reduced the number of infections across all neighborhoods. Increasing the treatment in neighborhoods of a lower socioeconomic level from 40% to 90% results in an additional decrease of approximately 25% in the number of infected individuals overall. In conclusion, we find that a combination of a moderate level of successful treatment across all areas with more focused treatment efforts in lower socioeconomic areas resulted in the least number of infections over time.

Publisher

Hindawi Limited

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3