Affiliation:
1. Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2. Center for Scientific Computing and Industrial Modelling, National Institute for Mathematical Sciences, Ghana
Abstract
Generally, the main focus of the grid-linked photovoltaic systems is to scale up the photovoltaic penetration level to ensure full electricity consumption coverage. However, due to the stochasticity and nondispatchable nature of its generation, significant adverse impacts such as power overloading, voltage, harmonics, current, and frequency instabilities on the utility grid arise. These impacts vary in severity as a function of the degree of penetration level of the photovoltaic system. Thus, the design problem involves optimizing the two conflicting objectives in the presence of uncertainty without violating the grid’s operational limitations. Nevertheless, existing studies avoid the technical impact and scalarize the conflicting stochastic objectives into a single stochastic objective to lessen the degree of complexity of the problem. This study proposes a stochastic multiobjective methodology to decide on the optimum allowable photovoltaic penetration level for an electricity grid system at an optimum cost without violating the system’s operational constraints. Five cutting-edge multiobjective optimization algorithms were implemented and compared using hypervolume metric, execution time, and nonparametric statistical analysis to obtain a quality solution. The results indicated that a Hybrid NSGAII-MOPSO had better convergence, diversity, and execution time capacity to handle the complex problem. The analysis of the obtained optimal solution shows that a practical design methodology could accurately decide the maximum allowable photovoltaic penetration level to match up the energy demand of any grid-linked system at a minimum cost without collapsing the grid’s operational limitations even under fluctuating weather conditions. Comparatively, the stochastic approach enables the development of a more sustainable and affordable grid-connected system.
Funder
National Institute for Mathematical Sciences
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献