In Situ Green Synthesis of Co3O4@ZnO Core-Shell Nanoparticles Using Datura stramonium Leaf Extract: Antibacterial and Antioxidant Studies

Author:

Tadesse Gezahegn1ORCID,Ananda Murthy H. C.12ORCID,Ravikumar C. R.3ORCID,Naveen Kumar T.4,Teshome Lema15,Desalegn Tegene1ORCID

Affiliation:

1. Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia

2. Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India

3. Research Centre, Department of Science, East West Institute of Technology, Bangalore 560091, Karnataka, India

4. Department of PG-Chemistry, Surana College Autonomous, Affiliated Bangalore University, Bangalore 560004, India

5. Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

Investigating and synthesizing potent antibacterial NPs using biological methods is highly preferred, and it involves nontoxic, cost-effective, and environmentally friendly chemicals and methods. Antibiotic drug resistance and oxidative stress have become a serious public health issue worldwide. Hence, the key objective of this study was to biologically synthesize and characterize the potent antibacterial Co3O4@ZnO core-shell nanoparticles for the antibacterial application. The radical scavenging ability of green synthesized Co3O4@ZnO core-shell nanoparticles was also determined. In this study, Co3O4@ZnO core-shell nanoparticles (CZCS NPs) have been synthesized using three different core to shell materials ratios of Co3O4 to ZnO (0.5 : 0.25 CZCS (1), 0.5 : 0.5 CZCS (2), and 0.5 : 0.75 M CZCS (3)) by employing Datura stramonium leaf extract. The polycrystalline nature of Co3O4@ZnO core-shell nanoparticles was investigated using the XRD and SAED characterization techniques. The investigated nanostructure of Co3O4@ZnO core-shell nanoparticles appeared with Co3O4 as the core and ZnO as an outer shell. Additionally, a variety of physicochemical properties of the nanoparticles were determined using various characterization techniques. The average crystallite sizes of CZCS (1), CZCS (2), and CZCS (3) were found to be 24 ± 1.4 , 22 ± 1.5 , and 25 ± 1.5  nm, respectively. The band gap energy values for CZCS (1), CZCS (2), and CZCS (3) determined from the UV-DRS data were found to be 2.75, 2.76, and 2.73 eV, respectively. The high inhibition activities against S. aureus, S. pyogenes, E. coli, and P. aeruginosa bacterial strains were obtained for the small size CZCS (2) nanoparticles at the concentration of 100 mg/mL with 22 ± 0.34, 19 ±  0 . 32 , 18 ±  0.45 , and 17 ±  0 .32 mm values, respectively. The high inhibition performance of CZCS (2) nanoparticles against Gram-positive and Gram-negative bacteria which is even above the control drug ampicillin is because of its small size and synergistic effect. The percentage scavenging activity of Co3O4@ZnO core-shell nanoparticles was also studied and CZCS (2) nanoparticles showed a good scavenging capacity (86.87%) at 500 μg/mL with IC50 of 209.26 μg/mL.

Funder

Adama Science and Technology University

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3