Validity of Machine Learning in Detecting Complicated Appendicitis in a Resource-Limited Setting: Findings from Vietnam

Author:

Phan-Mai Tuong-Anh1ORCID,Thai Truc Thanh2ORCID,Mai Thanh Quoc2ORCID,Vu Kiet Anh3ORCID,Mai Cong Chi1ORCID,Nguyen Dung Anh1

Affiliation:

1. General Surgery Department, Nhan dan Gia Dinh Hospital, 1 No Trang Long Street, Ward 7, Binh Thanh District, Ho Chi Minh City, Vietnam

2. Department of Medical Statistics and Informatics, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, Ward 11, District 5, Ho Chi Minh City, Vietnam

3. Planning Department, Nhan dan Gia Dinh Hospital, 1 No Trang Long Street, Ward 7, Binh Thanh District, Ho Chi Minh City, Vietnam

Abstract

Background. Complicated appendicitis, a potentially life-threatening condition, is common. However, the diagnosis of this condition is mainly based on physician’s experiences and advanced diagnostic equipment. This study built and validated machine learning models to facilitate the detection of complicated appendicitis. Methods. A retrospective cohort study was conducted based on medical charts of all patients undergoing a laparoscopic appendectomy at a city hospital during 2016-2020. The synthetic minority over-sampling technique (SMOTE) was used to adjust for the imbalance. Multiple classification approaches were used to train and validate models including support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), logistic regression (LR), artificial neural network (ANN), and gradient boosting (GB). Results. Among 1,950 patients included in the data analysis, there were 483 patients identified as having complicated appendicitis (24.8%). Based on data without SMOTE adjustment for imbalance, the accuracy levels and AUCs were high in all models using different parameters, ranging from 0.687 to 0.815. After adjusting for imbalance data using SMOTE, AUC and accuracy levels in the models using imbalance adjusted data were higher. Of these, the GB had all AUC and accuracy values of approximately 0.8 or more in both adjusted and unadjusted data. Conclusions. Machine learning approaches including SVM, DT, logistic, KNN, ANN, and GB have a high level of validity in classifying patients with complicated appendicitis and patients without complicated appendicitis. Among these, GB had the highest level of validity and should be used or further validated. Our study indicates the beneficial potentials of machine learning techniques in a clinical setting in general and in the diagnosis of complicated appendicitis in particular.

Funder

Department of Science and Technology, Ho Chi Minh City

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3