Gain of Spatial Diversity with Conjoint Signals in Arbitrarily Correlated Rayleigh Fading Channels

Author:

Omosa Edwin1ORCID,Akuon Peter1ORCID,Xu Hongjun2ORCID,Oduol Vitalis1

Affiliation:

1. School of Engineering, University of Nairobi, P O Box 30197-00100, Nairobi, Kenya

2. School of Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

Coding gains for arbitrarily correlated signals in a spatial diversity system with conjoint signals are presented in this study. The basic form of the proposed signal synthesizer evenly produces phase changes in the output signals. The mixer is an orthogonal transformation matrix, which is energy preserving and blind to the channel correlation matrix. The idea is to synthesize additional conjoint signal copies from the received signals that would be received if there were more antennas. However, these conjoint signals contain a level of correlation with the received signals. With the assumption of flat Rayleigh fading channels, simulation results for symbol error probability (SEP) are presented for different numbers of receive branches and varying correlation conditions. It is shown that under binary phase shift keying (BPSK), the synthesizer achieves decorrelation coding gains of about 1 dB when selection combining (SC) or equal gain combining (EGC) is used. The synthesizer’s performance across M-ary quadrature amplitude modulation (MQAM) signals is also tested. In addition, analytical frameworks are derived for BPSK and MQAM, which are tightly bound by the Monte Carlo simulation results obtained using Matlab. The correlation analysis is performed for different numbers of antennas and varied antenna spacings.

Funder

Ministry of Education, Kenya

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3