Fuzzy Social Force Model for Pedestrian Evacuation under View-Limited Condition

Author:

Cao Ningbo1ORCID,Zhao Liying2ORCID,Chen Mingtao3ORCID,Luo Ruiqi4ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Shanxi, Xi’an, China

2. School of Economics and Management, Xi’an University of Technology, Shanxi, Xi’an, China

3. Hualan Design & Consulting Group, Guangxi, Nanning, China

4. North China Municipal Engineering Design & Research Institute Co. Ltd., Tianjin, China

Abstract

Pedestrian evacuation dynamics in a classroom is always a complex process influenced by many fuzzy factors. It is very difficult and inappropriate to quantify the impact of these fuzzy factors by using the mathematical formula. Existing microscopic simulation models have made many efforts to use accurate mathematical method to model the fuzzy interaction behaviors between pedestrians under the view-limited condition. This study tries to fill this gap by establishing a microscopic simulation model which can represent the fuzzy behaviors of pedestrians under view-limited condition. The developed fuzzy social force model (FSFM) combines fuzzy logic into conventional social force model (SFM). Different from existing models and applications, FSFM adopts fuzzy sets and membership functions to describe the pedestrian evacuation process. Seven fuzzy sets are defined for this process, such as stop/go, moving direction, desired force, force from obstacles, force from pedestrian, force from indicators, and acceleration. Membership function of each input factor is calibrated based on the observed data. Model performance is verified by comparing speed distribution, velocity-density relationship, and results of simulation and observation evacuation time. Besides, the proposed model is applied to assess the number and space distribution of exit indicators and stickers. By comparing simulation results with existing models, the paper concludes that FSFM is able to well reproduce pedestrian movement dynamics in real world under view-limited condition.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3