Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

Author:

Singh Rupinder1ORCID,Singh Jatinder1,Singh Ravinder1

Affiliation:

1. I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India

Abstract

In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS) that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack). For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing IoT security: A systematic review of machine learning approaches for the detection of IoT botnets;Journal of King Saud University - Computer and Information Sciences;2023-12

2. Design of advanced intrusion detection systems based on hybrid machine learning techniques in hierarchically wireless sensor networks;Connection Science;2023-08-22

3. An efficient deep learning-based solution for network intrusion detection in wireless sensor network;International Journal of System Assurance Engineering and Management;2023-08-15

4. An Overview of Security Issues in Cognitive Radio Ad Hoc Networks;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-06-30

5. An Optimal Machine Learning Framework for the Enhancement of Intrusion Detection in Wireless Sensor Network Using Metaheuristic and RNS Technique;2023 6th International Conference on Information and Computer Technologies (ICICT);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3