Dl-3-n-Butylphthalide Improves Neuroinflammation in Mice with Repeated Cerebral Ischemia-Reperfusion Injury through the Nrf2-Mediated Antioxidant Response and TLR4/MyD88/NF-κB Signaling Pathway

Author:

Gao Yaran12ORCID,Hu Ming2,Niu Xiaoli2,Li Meixi2,Xu Lili3,Xiao Yining12,Zhang Jiawei1,Wang Hebo2,Li Litao2,Chu Bao2,Lv Peiyuan123ORCID

Affiliation:

1. Department of Neurology, Hebei Medical University, Shijiazhuang, China

2. Department of Neurology, Hebei General Hospital, Shijiazhuang, China

3. Department of Neurology, Hebei North University, Zhangjiakou, China

Abstract

Increasing evidence shows that oxidative stress and neuroinflammation play a crucial role in the pathology of vascular dementia (VD). Previously, we have found that Dl-3-n-butylphthalide (NBP) has antioxidant and anti-inflammatory activities in VD, whereas little is known about its mechanism. Therefore, the objective of our study was to explore the contribution of nuclear factor erythroid-2 related factor 2 (Nrf2) to NBP and its effects on anti-inflammatory activity in a mouse model of VD. Our studies revealed that NBP could effectively mitigate cognitive deficits, neuron cell loss, and apoptosis in mice subjected to repeated cerebral ischemia-reperfusion (RCIR). Additionally, NBP promoted both the expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) in hippocampus tissue. NBP exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation, increasing HO-1 and NQO1 expression, enhancing SOD activity, and inhibiting RCIR-induced MDA and 8-iso PGF2α generation in the hippocampus. NBP also significantly inhibited TLR4/MyD88/NF-κB signaling and suppressed microglial proliferation and the production of proinflammatory mediators in RCIR mice. Importantly, the antioxidant, antineuroinflammatory, and neuroprotective effects of NBP above were abolished by Nrf2 knockout. Collectively, these results indicated the effects of NBP on neuroinflammation were strongly associated with the Nrf2 pathway. Modulation of TLR4/MyD88/NF-κB pathway by Nrf2 is involved in the neuroprotective effect of NBP against VD induced by RCIR injury. With antioxidant and anti-neuroinflammatory properties, NBP could be a promising drug candidate for the prevention and/or treatment of VD and other neuroinflammatory disorders.

Funder

Hebei Medical Science Research Project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3