Active Equalization Strategy for Lithium-Ion Battery Packs Based on Multilayer Dual Interleaved Inductor Circuits in Electric Vehicles

Author:

Lei Xu1ORCID,He Jianping1ORCID,Fan Linqian1ORCID,Wang Guiping1ORCID

Affiliation:

1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China

Abstract

Lithium-ion batteries (LIBs) are widely used in electric vehicles (EVs) due to their superior power performance over other batteries. However, when connected in series, overcharged cells of LIBs face the risk of explosion, and undercharged cells decrease the life cycle of the battery. Eventually, the inconsistency phenomenon between cells resulting from manufacturing tolerance and usage process reduces the overall charging capacity of the battery and increases the risk of explosion after long-time use. Research has focused on synthesizing active material to achieve higher energy density and extended life cycle for LIBs while neglecting a comparative analysis of equalization technology on the performance of battery packs. In this paper, a nondissipative equalization structure is proposed to reconcile the inconsistency of series-connected LIB cells. In this structure, a circuit uses high-level equalization units to enable direct energy transfer between any two individual cells, and dual interleaved inductors in each equalization unit increase the equalization speed of a single cell in one equalization cycle by a factor of two. The circuit is compared with the classical inductor equalization circuit (CIEC), dual interleaved equalization circuit (DIEC), and parallel architecture equalization circuit (PAEC) in the states of standing, charging, and discharging, respectively, to validate the advantages of the proposed scheme. Considering the diversity of imbalance states, the state of charge (SOC) and terminal voltage are both chosen as the equalization criterion. The second-order RC model of the LIB and the adaptive unscented Kalman filter (AUKF) algorithm are employed for SOC estimation. For effective equalization, the adaptive fuzzy neural network (AFNN) is utilized to further reduce energy consumption and equalization time. The experiment results show that the AFNN algorithm reduces the total equalization time by approximately 37.4% and improves equalization efficiency by about 4.89% in contrast with the conventional mean-difference algorithm. Particularly, the experiment results of the equalization circuit verification certify that the proposed equalization structure can greatly accelerate the equalization progress and reduce the equalization loss compared to the other three equalization circuits.

Funder

Key Research and Development Program of Shaanxi Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3