TiO2 Nanocoatings with Controllable Crystal Type and Nanoscale Topography on Zirconia Implants to Accelerate Bone Formation

Author:

Li Nan1ORCID,Liu Zhichao1,Liu Guanqi12,Wang Zhi3,Guo Xianwei4,Guo Chuanbin5ORCID,Han Jianmin1ORCID

Affiliation:

1. Department of Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China

2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

3. Second Clinical Division, School and Hospital of Stomatology, Peking University, Beijing 100081, China

4. College of Materials Sciences and Engineering, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China

5. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China

Abstract

In dentistry, zirconia implants have emerged as a promising alternative for replacing missing teeth due to their superior aesthetic performance and chemical stability. To improve the osseointegration of zirconia implants, modifying their surface with hierarchical micro/nanotopography and bioactive chemical composition are two effective ways. In this work, a microscale topography was prepared on a zirconia surface using hydrofluoric acid etching, and then a 50 nm TiO2 nanocoating was deposited via atomic layer deposition (ALD). Subsequently, an annealing treatment was used to transform the TiO2 from amorphous to anatase and simultaneously generate nanoscale topography. Various investigations into the coating surface morphology, topography, wettability, and chemical composition were carried out using scanning electron microscopy, white light interferometry, contact-angle measurement, X-ray diffraction, and X-ray photoelectron spectroscopy. In addition, in vitro cytocompatibility and osteogenic potential performance of the coatings were evaluated by human bone marrow mesenchymal stem cells (hBMSCs), and in vivo osseointegration performance was assessed in a rat femoral condyle model. Moreover, the possible mechanism was also investigated. The deposition of TiO2 film with/without annealing treatment did not alter the microscale roughness of the zirconia surface, whereas the nanotopography changed significantly after annealing. The in vitro studies revealed that the anatase TiO2 coating with regular wavelike nanostructure could promote the adhesion and proliferation of osteoblasts and further improve the osteogenic potential in vitro and osseointegration in vivo. These positive effects may be caused by nanoscale topography via the canonical Wnt/β-catenin pathway. The results suggest that using ALD in combination with annealing treatment to fabricate a nanotopographic TiO2 coating is a promising way to improve the osteogenic properties of zirconia implants.

Funder

Research and Development

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3