Prediction of Prognosis and Recurrence of Bladder Cancer by ECM-Related Genes

Author:

Zhao Hongfan1ORCID,Chen Zihao1,Fang Yunze1,Su Mingqiang1,Xu Yipeng2,Wang Zhifeng3,Gyamfi Michael Adu4,Zhao Junfeng5ORCID

Affiliation:

1. Department of Urology, Southern Medical University, Guangzhou, China

2. Department of Urology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China

3. Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China

4. Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana

5. Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China

Abstract

Background. Bladder cancer (BLCA) is one of the most common cancers and ranks ninth among all cancers. Extracellular matrix (ECM) genes activate a number of pathways that facilitate tumor development. This study is aimed at providing models to predict BLCA survival and recurrence by ECM genes. Methods. Expression data from BLCA samples in GSE32894, GSE13507, GSE31684, GSE32548, and TCGA-BLCA cohorts were downloaded and analyzed. The ECM-related genes were obtained by differentially expressed gene analysis, stage-associated gene analysis, and random forest variable selection. The ECM was constructed in GSE32894 by the hub ECM-related genes and validated in GSE13507, GSE31684, GSE32548, and TCGA-BLCA cohorts. The correlations of the ECM score with cells (T cells, fibroblasts, etc.) and the response to immunotherapeutic drugs were investigated. Four machine learning models were selected and used to construct models to predict the recurrence of BLCA. A total of 15 paired BLCA and normal tissue specimens, human immortalized uroepithelial cell lines, and bladder cancer cell lines were selected for the validation of the difference in expression of FSTL1 between normal tissues and BLCA. Results. Six ECM genes (CTHRC1, MMP11, COL10A1, FSTL1, SULF1, and COL5A3) were recognized to be the hub ECM-related genes. The ECM score of each BLCA patient was calculated using these six selected ECM-related genes. BLCA patients with a high ECM score group had significantly lower overall survival rates than patients in the low ECM score group. We found that the ECM score was positively associated with immune cells and fibroblasts and negatively correlated with tumor purity. When treated with immunotherapy, BLCA patients with a high ECM score presented a high response rate and better prognosis. We also found that the combination of FSTL1, stage, age, and gender achieved an AUC value of 0.76 in predicting bladder cancer recurrence. Based on the RT-qPCR results of FSTL1 gene expression, there was an overall decrease in the mRNA expression of FSTL1 in cancer tissues compared to their adjacent normal tissues. Subsequent in vitro validation demonstrated that the FSTL1 expression was downregulated at the gene and protein level compared to that in SVH cells. Conclusion. Taken together, our results indicate that ECM-related genes correlate with immune cells, overall survival, and recurrence of BLCA. This study provides a machine learning model for predicting the survival and recurrence of BLCA patients.

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3