Effect of Sirtuin-1 and Wnt/β-Catenin Signaling Pathway in Rat Model of Spinal Cord Injury

Author:

Zhu Kunming1,Xu Weiwei2,Han Donghe3,Mei Xifan1ORCID

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China

2. Zoucheng People’s Hospital, Shandong Province, China

3. Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning, China

Abstract

Sirtuin-1 (SIRT1) has anti-inflammatory and antioxidant effects and has been reported to be involved in spinal cord injury (SCI). Wnt/β-catenin signal has been shown to play a critical role in the pathogenesis of chronic diseases, and it participated in the recovery of nerve function after SCI. However, the specific link between them in SCI is unclear. In addition, targeting posttraumatic astrocyte apoptosis is crucial for improving neural degeneration and locomotor function. Therefore, in this article, we studied the relationship of β-catenin and SIRT1 using in the SCI rat model and primary astrocyte treated with hydrogen peroxide (H2O2) or lithium chloride (LiCl). Results showed that after SCI, SCI area and motor function recover over time, and β-catenin is gradually increased to the seventh day and then in turn decreases until 4 weeks, positively correlated with cell apoptosis. The expression of SIRT1 and downstream FOXO4 gradually increased, and β-catenin is negatively correlated with SIRT1 expression. Moreover, treatment with H2O2 in primary cultured astrocyte significantly increased β-catenin and Caspase-3 expression, while decreased SIRT1 and Forkhead box O- (FOXO-) 4. The immunofluorescence results are consistent with this. Administration of LiCl further aggravates the above results. These findings suggest that SIRT1 is negatively correlated with β-catenin in SCI, which promotes the apoptosis of motor neuron cells, which may be related to the participation of FOXO4.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3