Eu:CROPIS AIV Program: Challenges and Solutions for a Spin-Stabilized Satellite Containing Biology

Author:

Delovski Toni1,Düvel Catherin1,Greif Fabian1,Heidecker Ansgar1ORCID,Kottmeier Sebastian1ORCID,Mierheim Olaf2,Nohka Falk1,Orlowski-Feldhusen Fabian1

Affiliation:

1. DLR, Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen, Germany

2. DLR, Institute of Composite Structures and Adaptive Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany

Abstract

Eu:CROPIS is DLR’s first mission of the Compact Satellite Program. Its primary payload focuses on the research of closed-loop biological, regenerative life support systems, in a simulated gravitational environment of the Moon and Mars over months at a time. This is achieved by rotation of the satellite around its central body axis, using only magnetic torquers as actuators. A secondary payload (“PowerCells”) by the NASA Ames Research Center also utilizes the artificial gravity to conduct growth experiments on genetically modified organisms (GMOs). These payloads and the system design imposed constraints which affected the Assembly Integration and Verification (AIV) program in various ways and created challenges for the relatively small team to find solutions for. The paper to be presented will address the different aspects of the AIV program. This includes the verification of different critical components like the newly developed CFRP pressure vessel containing the primary payload and the Micrometeoroid and Debris Protection Shield, which protects it. Both items went through rigorous testing, including high-velocity impact tests, to ensure their reliability in orbit. Various other aspects concerning the biology had to be taken into account during AIV campaigns: due to the presence of degradable components within the primary payload, a late access capability had to be implemented in order to exchange biology as well as chemistry in cases of launch delays. To allow these operations as close as six months prior to launch, a highly flexible and streamlined acceptance test campaign was developed. A major impact on test planning and logistics was the fact that the secondary payload “PowerCells” contains GMOs, which European and German regulations restrict to be handled exclusively in especially certified laboratories (biosafety level 1 (BSL-1)). Thus, the use of external test facilities for the flight model campaign was not feasible as no European test center is certified to BSL-1. In consequence, the clean room facilities of the DLR Institute of Space Systems had to be certified to BSL-1 and new test infrastructure had to be procured in a short time frame to cover for acceptance testing. The design of the satellite and nature of the attitude control subsystem required limits on the magnetic momentum of the system and every unit it contains. A test flow incorporating the magnetic property measurement of each unit and a final system-level test in an external facility had to be devised, which enabled budgeting and projection of expected measurement results on the system level. Furthermore, the moments of inertia had to be measured precisely in order to have a stable spinning axis enabling a stable gravity simulation. Finally, the functionality had to be verified for each unit and for the system which required that several small test campaigns had to be conducted, like a solar panel deployment test and extensive software testing. A tight link to the operations teams of the German Space Operations and Control Center during such tests and beyond finally ensures the operability of the overall system in the operational phase.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3