Affiliation:
1. Department of CSE, Vels Institute of Science, Technology and Advanced Studies, Chennai 600117, India
2. Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
Abstract
The Indian subcontinent is known for its larger coastline spanning, over 8100 km and is considered the habitat for many millions of people. The livelihood of their habitat is purely dependent upon the fishing activities. Often, the search for fish requires more time for catching and more resources, thus increasing the operational cost leading to low profitability. With the advent of artificial intelligence algorithms, designing intelligent algorithms for an effective prediction of fishing areas has reached new heights in terms of high accuracy (Acy) and less time. But still, predicting the location of potential fishing zones (PFZs) is always a daunting task. To reduce these issues, this work presented the novel hybrid prediction architecture of PFZs using remote sensing images. The proposed architecture integrates the deep convolutional layers and flitter bat optimized long short-term memory (FB-LSTM)-based recurrent neural networks (RNN). These convolutional layers are utilized to remove the various color features such as chlorophyll, sea surface temperature (SST), and GPS location from the satellite images, and FB-LTSM is utilized to predict the potential locations for fishing. The extensive experimentations are carried out utilizing the satellite data from Indian National Centre for Ocean Information Services (INCOIS) and implemented using TensorFlow 1.18 with Keras API. The performance metrics such as prediction Acy, precision (Pscn), recall (Rcl) or sensitivity (Sty), specificity (Sfy), and F1-score and compared with other existing intelligent learning models. From our observations, the proposed architecture (99% prediction Acy) has outperformed the other existing algorithms and finds its best place in designing an intelligent system for better predicting of PFZs.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Reference34 articles.
1. Applications of remote sensing in the validations of potential fishing zones (PFZ) along the coast of North Tamil Nadu, India;P. Nammalwar;Indian Journal of Marine Sciences,2013
2. 2012 Fourth International Conference on Computational Intelligence, Modelling and Simulation
3. Impact on fishing patterns and life cycle changes of Kanyakumari fisherman due to fading potential fishing zones;N. Rivandran
4. Evaluation of remote-sensing-based potential fishing zones (PFZs) forecast methodology
5. Link Adaptation on an Underwater Communications Network Using Machine Learning Algorithms: Boosted Regression Tree Approach
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献