si-PDGFRβ-Loaded Exosomes Suppress the Progression of Glioma by Inhibiting the Oxidative Associated PI3K/Akt/EZH2 Signaling Pathway

Author:

Li Yuping12ORCID,Yu Hailong1ORCID,Ma Qiang1ORCID,Wei Min2ORCID,Liu Xiaoguang1ORCID,Qi Yajie1ORCID,Li Chen3ORCID,Dong Lun1ORCID,Zhang Hengzhu2ORCID

Affiliation:

1. Neuro Intensive Care Unit, Clinical Medical College, Yangzhou University, Yangzhou, China

2. Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China

3. Department of Neurosurgery, Changzhou No. 2 People’s Hospital, Changzhou, Jiangsu, China

Abstract

This study investigated the possibility of exosomes loaded with si-PDGFRβ ability to suppress the progression of glioma. Common gliomas develop from neuroglial progenitor cells. Many variables affect the survival rate and occurrence of gliomas. Understanding oxidative stress processes and creating new, efficient treatments are crucial because oxidative stress is linked to the development of brain tumors. For this purpose, selected clinical samples were subjected to various tests like quantitative real-time PCR, Cignal Finder RTK signaling 7-pathway reporter array analysis, CCK-8 analysis, flow cytometry, and immunoblotting. Here, we demonstrated that PDGFRβ expression was increased in glioma patients. Following that, cell-derived exosomes were extracted and collected and traced in vivo, and selected tissue samples were subjected to immunohistochemical analysis. The results indicated that the knockdown of PDGFRβ (si-PDGFRβ) inhibited the proliferation of glioma cells. Besides this, si-PDGFRβ-loaded exosomes induced a similar antitumor effect in glioma cells. The anticancer effect of si-PDGFRβ-loaded exosomes was mediated by the inactivation of the PI3K/Akt/EZH2 pathway. Finally, we verified that this exosome delivery system, si-PDGFRβ-loaded exosomes, had robust targeting and no associated toxicity. In conclusion, the study confirmed that si-PDGFRβ-loaded exosomes inhibit glioma progression via inactivating the PI3K/Akt/EZH2 signaling pathway.

Funder

Postdoctoral Project of Jiangsu Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3