A Study on the Design and Implementation of an Improved AdaBoost Optimization Mathematical Algorithm Based on Recognition of Packaging Bottles

Author:

Liu Guozhu1ORCID,Tsai Sang-Bing2ORCID

Affiliation:

1. School of Art and Archaeology, Zhejiang University, Hangzhou 310028, China

2. Regional Green Economy Development Research Center, School of Business, WUYI University, Nanping, China

Abstract

In this paper, a special design system is developed based on the design of the packaging bottle to achieve the effective acquisition of the image of the cross-section of the packaging bottle to be measured under the condition of limited space size, avoiding the distortion of the object to be measured. At the same time, the image of the area where the target packaging bottle is located is segmented, and the curve features are quickly determined and effectively matched with the template library to realize the recognition of the shape features of the bottle. In this paper, the design of the packaging bottle is first designed by mechanism design and 3D modeling, followed by rapid prototyping methods such as 3D printing, and the prototype is made for functional verification. Finally, the transmission speed and stability of the design system for packaging bottle recognition are improved through structural analysis and optimization methods. To realize the intelligent control of the packaging bottle transmission and identification system, the hardware control circuit is designed and the relevant intelligent control program is prepared based on the embedded system so that the packaging bottles in the transmission process can be quickly and accurately positioned and identified. An improved AdaBoost algorithm is proposed for packaging bottle detection. In the process of algorithm learning, the Haar features are too large and time-consuming, and the training sample is cropped to remove the sample edge pixels, which effectively reduces the number of features, thus reducing the computation. The proposed optical flow method is used to obtain the motion region in the video image as the region of interest, and the canny operator is used in the region of interest for edge detection, and the region of interest is filtered by the edge energy to exclude the noninterest region. Finally, the AdaBoost algorithm is used to detect the region of interest, which reduces the detection area and decreases the detection time. The improved AdaBoost algorithm has a high accuracy improvement over the traditional AdaBoost algorithm for the recognition of various packaging bottles with relatively suitable training set samples, and the system recognition time has reached the requirements of industrial recognition.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3