Hybrid Fuzzy Clustering Method Based on FCM and Enhanced Logarithmical PSO (ELPSO)

Author:

Zhang Jian1ORCID,Ma Zongheng1ORCID

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai 200092, China

Abstract

Fuzzy c-means (FCM) is one of the best-known clustering methods to organize the wide variety of datasets automatically and acquire accurate classification, but it has a tendency to fall into local minima. For overcoming these weaknesses, some methods that hybridize PSO and FCM for clustering have been proposed in the literature, and it is demonstrated that these hybrid methods have an improved accuracy over traditional partition clustering approaches, whereas PSO-based clustering methods have poor execution time in comparison to partitional clustering techniques, and the current PSO algorithms require tuning a range of parameters before they are able to find good solutions. Therefore, this paper introduces a hybrid method for fuzzy clustering, named FCM-ELPSO, which aim to deal with these shortcomings. It combines FCM with an improved version of PSO, called ELPSO, which adopts a new enhanced logarithmic inertia weight strategy to provide better balance between exploration and exploitation. This new hybrid method uses PBM(F) index and the objective function value as cluster validity indexes to evaluate the clustering effect. To verify the effectiveness of the algorithm, two types of experiments are performed, including PSO clustering and hybrid clustering. Experiments show that the proposed approach significantly improves convergence speed and the clustering effect.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast and automatic hesitant fuzzy clustering applied to image segmentation;Journal of Intelligent & Fuzzy Systems;2024-03-27

2. Spatial Asset Management System's Integration with AI and IoT-Logger to Reduce Water Loss;2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS);2024-02-21

3. African vultures optimization algorithm based Choquet fuzzy integral for global optimization and engineering design problems;Artificial Intelligence Review;2023-10-03

4. Localized Simple Multiple Kernel K-Means Clustering with Matrix-Induced Regularization;Computational Intelligence and Neuroscience;2023-03-17

5. Modified Fast and Robust Fuzzy C-means Algorithm for Flood Damage Assessment using Optimal Image Segmentation Cluster Number;2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM);2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3