A Prediction Model of Cutting Force about Ball End Milling for Sculptured Surface

Author:

Mou Wenping12,Zhu Shaowei2,Zhu Menghao3,Han Lei3ORCID,Jiang Lei3ORCID

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. NC Machining Plant, AVIC Chengdu Aircraft Industrial (group) Co., Ltd, Chengdu 610092, China

3. Institute of Advanced Design and Manufacturing, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Cutting force prediction is very important to optimize machining parameters and monitor machining state. In order to predict cutting force of sculptured surface machining with ball end mill accurately, tool posture, cutting edge, contact state between cutter, and workpiece are studied. Firstly, an instantaneous motion model of ball end mill for sculptured surface is established. The instantaneous milling coordinate system and instantaneous tool coordinate system are defined to describe the position and orientation of tool, and the transformation matrix between coordinate systems is derived. Secondly, by solving three boundaries around engagement of cutter and workpiece, a cutter-workpiece engagement model related to tool posture, milling parameters, and tool path is established. It has good adaptability to the variable tool axis relative to the machining surface. Finally, an algorithm of thickness about an instantaneous undeformed chip is researched, and a prediction model of cutting force is realized with microelement cutting theory. Also, the model is suitable for sculptured surface machining with arbitrary tool posture and feed direction. The accuracy of the proposed prediction model was verified by a series of experiments.

Funder

Special Fund of High-end CNC Machine Tools and Basic Manufacturing Equipment

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3