A Lagrangian Multiplier Method for TDOA and FDOA Positioning of Multiple Disjoint Sources with Distance and Velocity Correlation Constraints

Author:

Yang Bin12,Yang Zeyu12,Wang Ding12ORCID

Affiliation:

1. PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China

2. National Digital Switching System Engineering and Technology Research Center, Zhengzhou 450002, China

Abstract

This paper considers the source localization problem using time differences of arrival (TDOA) and frequency differences of arrival (FDOA) for multiple disjoint sources moving together with constraints on their distances and velocity correlation. To make full use of the synergistic improvement of multiple source localization, the constraints on all sources are combined together to obtain the optimal result. Unlike the existing methods that can achieve the normal Cramér-Rao lower bound (CRLB), our object is to further improve the accuracy of the estimation with constraints. On the basis of maximum likelihood criteria, a Lagrangian estimator is developed to solve the constrained optimization problem by iterative algorithm. Specifically, by transforming the inequality constraints into exponential functions, Lagrangian multipliers can be used to determine the source locations via Newton’s method. In addition, the constrained CRLB for source localization with distance and velocity correlation constraints is also derived. The estimated accuracy of the source positions and velocities is shown to achieve the constrained CRLB. Simulations are included to confirm the advantages of the proposed method over the existing methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Algorithm Fusing State Estimation and TDOA Filtering for UAV Tracking Enhancement;IEEE Transactions on Aerospace and Electronic Systems;2024-04

2. A Multilevel Filter Based Variable Feasible Region Projection for Wireless Sensor Networks;2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE);2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3