Investigation on Physicomechanical Properties and Constitutive Model of Tuff in Mila Mountain Tunnel under Dry and Saturated Conditions

Author:

He Zhihao12,Pei Xiangjun12ORCID,Cui Shenghua12ORCID,Sun Wentai3,Luo Luguang12,He Chengruiwei4

Affiliation:

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China

2. College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China

3. CCCC Second Highway Consultants Co., Ltd., Wuhan, Hubei 430070, China

4. College of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China

Abstract

Many tunnel engineering accidents are generally caused by water softening tuff of high porosity. Experimental and theoretical analytical methods, including rock ultrasonic testing, X-ray diffraction (XRD), microscopic observation, uniaxial compression test, and scanning electron microscope (SEM), are employed to analyze the physicomechanical properties of tuff in Mila Mountain tunnel under dry and saturated conditions. Then, the mechanism of tuff softening in water is explained. Finally, the statistical damage constitutive model of tuff is established. It was revealed that the tuff compositions were dominated by quartz and clay minerals accounting for more than 90%, and clay minerals, anhydrite, and pyrite were mainly soluble minerals. After being saturated with water, the soluble minerals in the tuff are dissolved, and the porosity and wave velocity are increased; however, the elastic modulus and peak strength are decreased, indicating that water softening was distinct. Water softening after saturation was due to the mineral compositions and microstructure characteristics of tuff in Mila Mountain tunnel; specifically, as the tuff characterized by high porosity was conductive to water absorption, the soluble minerals in the tuff were corroded and swelled by water, dissolving, loosening, and softening the tuff structure; then, its mechanical behavior was degraded. It was demonstrated by the experimental results consistent with theoretical results that the model can be employed to express the constitutive behavior of tuff in Mila Mountain tunnel under dry and saturation conditions. The findings provide insights into macroscale deterioration of tuffs and theoretical knowledge for the tunnel excavation and support of Mila Mountain tunnel.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3