Research on Liquid Flow Rate Detection of Mixed Fluid Based on Vibration Signal Characteristic Analysis of Gas Liquid Two-Phase Flow

Author:

Jian Zhang1ORCID,Raja S. Selvakumar2ORCID,Lei Liang1ORCID,Shu Dai1ORCID

Affiliation:

1. Yangtze University, Computer Science, Jingzhou, China

2. University of Gondar, Gonder, Ethiopia

Abstract

The online detection of liquid flow rate in gas-liquid two-phase flow has become an important factor in ensuring the safe operation of gas wells. In this paper, the real-time measurement of liquid holdup in gas-liquid two-phase flow is carried out by analyzing the characteristics of vibration signals excited by gas-liquid two-phase flow impacting on the pipe wall. Firstly, an acceleration sensing detection and processing system is constructed to obtain the vibration signals excited by gas-liquid two-phase flow impacting on the pipe wall. Then, the pure airflow vibration signals at different flow velocities and the gas-liquid two-phase flow excitation vibration signals at different liquid flow rates are tested, respectively, and the time-frequency characteristics analysis based on STFT is implemented. The practice shows the following: firstly, the frequency band of 6.5−15 Hz is identified as the characteristic frequency band of liquid flow rate in gas-liquid two-phase flow. Secondly, the liquid holdup is positively correlated with the vibration energy in its characteristic frequency band. Thirdly, a mathematical model of the relationship between liquid flow rate and vibration energy is constructed. Finally, the measurement error of liquid holdup is within 10%. This research method has laid a good foundation for the subsequent detection of characteristic parameters of each phase in gas-solid-liquid complex multiphase flow fluids, and it has certain application and promotion value.

Funder

Hubei Provincial Department of Education

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference27 articles.

1. Interfacial disturbance wave velocity of gas-liquid two-phase annular flow in vertical pipe;N. Zhao;Cambridge Assessment International Education Journal,2018

2. Progress in numerical simulation of multiphase flow in microchannels;X. D. Liu;Chemical Industry and Engineering Progress,2016

3. The Evaluation of Uncertainty of Flow Totalizer Standard Facility;C. Shen;Acta Metrologica Sinica,2017

4. Parameters Measurement for Multiphase Flow Process

5. Research advances of PIV in GasLiquid phase flow;S. Yino;Petroleum Engineer,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3