Modeling Electric Vehicle’s Battery Module using Computational Homogenization Approach

Author:

Shinde Shantanu R.1ORCID,Song Yihan1,Sahraei Elham1ORCID

Affiliation:

1. Electric Vehicle Safety Lab, Temple University College of Engineering, 1947 N 12th St, Philadelphia, PA 19122, USA

Abstract

Numerical simulations of heterogeneous structures like battery modules of electric vehicles are challenging due to the various length scales involved in it. Even with the latest computing technology, it is impossible to simulate the crash scene of the full vehicle resolving all length scales. Such hurdles have prevented manufacturers to understand the mechanical response of battery packs in vehicle crash scenarios. In this work, the problem of multiple length scales was solved using the RVE technique based on homogenization theory. An appropriate representative volume element was identified, and a 3D FE model was developed. Classical first-order boundary conditions were used in this research work. The RVE was subjected to several macroscopic deformations, and its response was obtained. The homogenized material properties were computed from the obtained responses, and a material model available in LS-Dyna’s material library was selected and calibrated to describe the nonlinear multiaxial behavior of the homogenized battery module at the macroscale. For validation, the USABC Crush and Drop Tests were simulated for the detailed and homogenized battery modules. The main output of this research is a robust and computationally efficient tool enabling satisfactory integration of a battery pack model to the vehicle for crash simulations, eliminating the need to simulate micro details at macro length scales. This approach significantly reduced the computational cost. For example, for a Drop Test simulation, the homogenized model reduced the simulation time from 40 hours (detailed model) to about 3 minutes, while maintaining a high precision ( R 2 = 0.9871 ) in predicting the load-displacement response. The system level modeling will enable the stakeholders to perform efficient optimization and safety evaluation for full-scale crashworthiness of electric vehicles.

Funder

U.S. Army

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3