Affiliation:
1. Contemporary Business and Trade Research Center, Zhejiang Gongshang University, Hangzhou 310018, China
2. College of Computer Science & Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
3. School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract
Association rules mining is an important topic in the domain of data mining and knowledge discovering. Some papers have presented several interestingness measure methods; the most typical areSupport,Confidence,Lift,Improve, and so forth. But their limitations are obvious, like no objective criterion, lack of statistical base, disability of defining negative relationship, and so forth. This paper proposes three new methods,Bi-lift, Bi-improve, andBi-confidence, forLift, Improve, and Confidence, respectively. Then, on the basis of utility function and the executing cost of rules, we propose interestingness function based on profit (IFBP) considering subjective preferences and characteristics of specific application object. Finally, a novel measure framework is proposed to improve the traditional one through experimental analysis. In conclusion, the new methods and measure framework are prior to the traditional ones in the aspects of objective criterion, comprehensive definition, and practical application.
Funder
National Key Technology R and D Program of China
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献