Adaptive Bandwidth Prediction and Smoothing Glitches in Low-Latency Live Streaming

Author:

Wu Dapeng123ORCID,Cui Linfeng123ORCID,Tang Tong123ORCID,Wang Ruyan123ORCID

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Advanced Network and Intelligent Interconnection Technology Key Laboratory of Chong Qing Education Commission of China, Chongqing 400065, China

3. Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China

Abstract

HTTP adaptive streaming (HAS) technologies such as dynamic adaptive streaming over HTTP (DASH) and common media application format (CMAF) are now used extensively to deliver live streaming services to large numbers of viewers. However, in dynamic networks, inaccurate bandwidth prediction may result in the wrong request of bitrate, and short-term network fluctuations may produce glitches, causing unnecessary bitrate switching, thereby degrading clients' Quality of Experience (QoE). To tackle this, we propose adaptive bandwidth prediction and smoothing glitches in low-latency live streaming (called APSG) in this article. Concretely, firstly, the size of random bandwidth fluctuations is exploited as the weight of exponentially weighted moving average (EWMA) for adaptive bandwidth prediction; in addition to bandwidth prediction and buffer occupancy, glitches phenomena under a stable network environment are taken into account to enhance the viewing experience of clients. Finally, experimental results show that compared to traditional ABR algorithms under a stable network environment, APSG could reduce the number of bitrate switches and latency by up to 72.6% and 27.3%, respectively; under a dynamic network environment, APSG could reduce the number of bitrate switches and latency by up to 53.8% and 23.6%, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3