A Study of Piano-Assisted Automated Accompaniment System Based on Heuristic Dynamic Planning

Author:

Lin Mengqian12ORCID,Zhao Rui3

Affiliation:

1. University of Miami Frost School of Music, Miami, FL 33146, USA

2. Shanghai Modern Academy of Family Education, Shanghai 200333, China

3. Xi’an Conservatory of Music, Xi’an, Shanxi 710061, China

Abstract

In this paper, a piano-assisted automated accompaniment system is designed and applied to a practical process using a heuristic dynamic planning approach. In this paper, we aim at the generation of piano vocal weaves in accompaniment from the perspective of assisting pop song writing, build an accompaniment piano generation tool through a set of systematic algorithm design and programming, and realize the generation of recognizable and numerous weaving styles within a controlled range under the same system. The mainstream music detection neural network approaches usually convert the problem into a similar way as image classification or sequence labelling and then use models such as convolutional neural networks or recurrent neural networks to solve the problem; however, the existing neural network approaches ignore the music relative loudness estimation subtask and ignore the inherent temporality of music data when solving the music detection task. However, the existing music generation neural network methods have not yet solved the problems of discrete integrability brought by piano roll representation music data and the still-limited control domain and variety of instruments generated in the controllable music generation task. To solve these two problems, this paper proposes a controlled music generation neural network model for multi-instrument polyphonic music. The effectiveness of the proposed model is verified by conducting several sets of experiments on the collected MIDICN data set, and the experimental results show that the model achieves better performance in the aspects of negative log-likelihood value, perplexity, musicality measure, domain similarity analysis, and manual evaluation.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3