The Bioinformatics Analysis of Aldosterone-Producing Adenoma and Verification of Differentially Expressed Genes

Author:

Gao Yinjie1,Ma Xiaosen1,Wang Huiping1,Cui Yunying1,Zhang Yushi2,Nie Min1,Tong Anli1ORCID

Affiliation:

1. NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China

2. Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China

Abstract

Purpose. Previous studies have investigated the transcriptional modulations of aldosterone overproduction of aldosterone-producing adenomas (APAs). We aimed to systematically study the genes and pathways associated with molecular mechanism underlying APA by bioinformatics analysis and experimental validation for the expression profile. Methods. This study was performed based on three gene expression profiles (GSE64957, GSE8514, and GSE60042). Differentially expressed gene (DEG) investigation, function and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed by the bioinformatics analysis. For the validation with quantitative PCR, tissues from 11 patients with nonfunctioning adrenal adenoma (NFA) and 13 with APA were included in our cohort. Results. In this study, the bioinformatics analysis was performed and 182 upregulated and 88 downregulated DEGs were identified. As expected, the upregulated DEGs were primarily involved in calcium ion homeostasis ( p  = 2.00X10−4). In the KEGG pathway analysis, calcium signaling pathway ( p  = 4.38X10−6) and the aldosterone synthesis and secretion ( p  = 8.73X10−6) were enriched. Moreover, quantitative PCR was performed to detect the expression of 7 upregulated genes (PCP4, ATP2A3, CYP11B2, CLCN5, HTR4, VDR, and AQP2) among the intersection of DEGs. The mRNA levels of CYP11B2, HTR4, and AQP2 were significantly increased in APA samples compared to NFA (24.420 folds of NFA, p  < 0.001; 3.753 folds of NFA, p  = 0.002; and 11.487 folds of NFA, p  = 0.018). Conclusion. In summary, the present study showed several candidate genes with high expression from bioinformatics analysis and our cohort. Also, the DEGs were enriched in aldosterone synthesis and secretion and calcium signaling pathway as expected.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3