A Note on the Performance of Biased Estimators with Autocorrelated Errors

Author:

Tyagi Gargi1ORCID,Chandra Shalini1

Affiliation:

1. Department of Mathematics & Statistics, Banasthali University, Rajasthan 304022, India

Abstract

It is a well-established fact in regression analysis that multicollinearity and autocorrelated errors have adverse effects on the properties of the least squares estimator. Huang and Yang (2015) and Chandra and Tyagi (2016) studied the PCTP estimator and the r-(k,d) class estimator, respectively, to deal with both problems simultaneously and compared their performances with the estimators obtained as their special cases. However, to the best of our knowledge, the performance of both estimators has not been compared so far. Hence, this paper is intended to compare the performance of these two estimators under mean squared error (MSE) matrix criterion. Further, a simulation study is conducted to evaluate superiority of the r-(k,d) class estimator over the PCTP estimator by means of percentage relative efficiency. Furthermore, two numerical examples have been given to illustrate the performance of the estimators.

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new two-parameter blas estimator in a linear regression model under correlated or heteroscedastics errors;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

2. A New Almost Unbiased Estimator for Linear Regression Model in Heteroscedastic or Correlated Errors;2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM);2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3