β-Carboline Silver Compound Binding Studies with Human Serum Albumin: A Comprehensive Multispectroscopic Analysis and Molecular Modeling Study

Author:

Alsalme Ali1ORCID,Khan Rais Ahmad1ORCID,Alkathiri Arwa M.1,Ali Mohd. Sajid2ORCID,Tabassum Sartaj2,Jaafar Mohammed1,Al-Lohedan Hamad A.2ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

β-Carbolines (βCs) belong to the naturally occurring alkaloid family, derived from 9H-pyrido[3,4-b]indole, also known as norharmane (Hnor). Knowing the importance of the βCs alkaloid family in biological processes, a comprehensive binding study is reported of four Ag(I) compounds containing the ligand Hnor and having different counteranions, namely, NO3, ClO4, BF4, and PF6, with human serum albumin (HSA) as a model protein. Different approaches like UV-visible, fluorescence spectroscopy, circular dichroism (CD), and molecular docking studies have been used for this purpose. The fluorescence results establish that the phenomenon of binding of Ag(Hnor) complexes to HSA can be deduced from the static quenching mechanism. The results showed a significant binding propensity of the used Ag(I) compounds towards HSA. The role of the counteranion on the binding of Ag(I) compounds to HSA appeared to be remarkable. Compounds with (ClO4) and (NO3) were found to have the most efficient binding towards HSA as compared to BF4and PF6. Circular dichroism (CD) studies made clear that conformational changes in the secondary structure of HSA were induced by the presence of Ag(I) compounds. Also, the α-helical structure of HSA was found to get transformed into a β-sheeted structure. Interestingly, (ClO4) and (NO3) compounds were found to induce most substantial changes in the secondary structure of HSA. The outcome of this study may contribute to understanding the propensity of proteins involved in neurological diseases (such as Alzheimer’s and Parkinson’s diseases) to undergo a similar transition in the presence of Ag-β-carboline compounds.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3