Affiliation:
1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Abstract
In the driver fatigue monitoring technology, the essence is to capture and analyze the driver behavior information, such as eyes, face, heart, and EEG activity during driving. However, ECG and EEG monitoring are limited by the installation electrodes and are not commercially available. The most common fatigue detection method is the analysis of driver behavior, that is, to determine whether the driver is tired by recording and analyzing the behavior characteristics of steering wheel and brake. The driver usually adjusts his or her actions based on the observed road conditions. Obviously the road path information is directly contained in the vehicle driving state; if you want to judge the driver’s driving behavior by vehicle driving status information, the first task is to remove the road information from the vehicle driving state data. Therefore, this paper proposes an effective intrinsic mode function selection method for the approximate entropy of empirical mode decomposition considering the characteristics of the frequency distribution of road and vehicle information and the unsteady and nonlinear characteristics of the driver closed-loop driving system in vehicle driving state data. The objective is to extract the effective component of the driving behavior information and to weaken the road information component. Finally the effectiveness of the proposed method is verified by simulating driving experiments.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献