Application of Expert Adjustable Fuzzy Control Algorithm in Temperature Control System of Injection Machines

Author:

Hu Yanan1ORCID,Wu Kun1

Affiliation:

1. Xijing University, Xi’an 710000, China

Abstract

The stability and accuracy of temperature control of the injection molding machine is one of the keys to determine the quality and appearance of plastic parts. Due to the temperature control system of water-cooled injection molding machine has the characteristics of coupling, nonlinearity, and hysteresis, the traditional proportion-integral-derivative (PID) method to control the barrel temperature of injection molding machine will yield temperature overshoot and oscillation, affecting the product and appearance quality. In order to improve the effect of barrel temperature control, in this paper, an expert adjustable fuzzy control strategy (EAFCA) is designed to optimize the barrel temperature control system through the combination of expert control, fuzzy control, and PID control. The expert control rules are designed according to the barrel temperature deviation e and its change rate ec. The expert rules are used to adjust the mapping range of the fuzzy universe in real time for the input and output variables of the fuzzy controller and finally to realize the accurate adjustment of the PID controller parameters. In terms of control systems, the distributed control system (DCS) monitoring system of injection molding machine is designed with Siemens CPU315-2PN/DP and industrial computer as the hardware core and Step7 and windows control center (WinCC) as the software platform to complete the tool plastic production monitoring system. The DCS improves the operability, data management convenience, and plastic production efficiency of the injection molding machine monitoring system. The Simulink simulation and field test show that the EAFCA method can increase the adjustment speed by approximately 34 s and reduce the overshoot by nearly 3.1%, which significantly improves the stability and accuracy of the barrel temperature and improves the quality of plastic parts.

Funder

Key Research and Development Projects of Shaanxi Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3