High-Precision Electrical Impedance Tomography for Electrical Conductivity of Metallic Materials

Author:

Zhao Shuanfeng1ORCID,Miao Yao1,Chai Rongxia1,Zhao Jiaojiao1,Bai Yunrui1,Wei Zheng1,Ren Simin1

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Metal materials are subject to deformation, internal stress distribution, and cracking during processing, all of which affect the distribution of electrical conductivity of the metal. Suppose we can detect the conductivity distribution of metal materials in real time. In that case, we can complete the inverse imaging of metal material properties, structures, cracks, etc. and realize nondestructive flaw detection. However, metal materials' small resistance, high electrical conductivity, and susceptibility of voltage signals to noise signal interference make an accurate measurement of metal conductivity challenging. Therefore, this paper addresses the problem of detecting the conductivity distribution of metals by investigating a high-precision four-electrode AC measurement method. This technical approach combines laminar imaging techniques with high-precision weak signal extraction methods. On this basis, a method and equipment for high-precision electrical impedance tomography of metallic materials’ electrical conductivity were established. The way specifies a new number of electrodes and adopts a model of spaced excitation reference measurements. Single-frequency sinusoidal AC signal is used for excitation, and Shannon wavelet analysis is used for signal extraction and noise reduction. Super-resolution reconstruction algorithms are used for resistivity distribution image reconstruction to improve image quality. Based on the results of various comparative experiments, it is clear that this new functional technique method has good imaging stability and operability and can perform tasks such as analyzing the internal conductivity distribution of metals. This research provides an effective way of new ideas for the safe detection of metal structures, the changes in crystal tissue structure, and the study of metal properties. In particular, it expands the scope of research in the development and application of resistance tomography, which has tremendous commercial potential research significance.

Funder

Shanxi Provincial Key Research and Development Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3