Application of Finite Volume Method to Structural Stochastic Dynamics

Author:

Chen Weidong1,Yu Yanchun1,Jia Ping1,Wu Xiande1,Zhang Fengchao1

Affiliation:

1. Harbin Engineering University, 145 Nantong Street, Harbin 150001, China

Abstract

The stochastic dynamic problems were becoming more difficult after considering the influences of stochastic factors and the complexity of the dynamic problems. To this background, the finite volume method combined with Perturbation Method was proposed for the stochastic dynamic analysis. The equations of perturbation-finite volume method were derived; the explicit expressions between random response and basic random variables were given; the method of stochastic dynamic analysis was discussed; and the examples were presented to verify the perturbation-finite volume method. The results of perturbation-finite volume method were compared with the results of Monte Carlo Method, which proved that the proposed method was correct and accurate. Because the proposed method was simple and clear, the equations were easy to establish and the efficiency was improved. Meanwhile, the proposed method was successfully applied to the stochastic dynamic analysis of linear multibody system, which was verified through the example in this paper.

Funder

The Science and Technology on Combustion and Explosion Laboratory Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3