On the 3D Track Planning for Electric Power Inspection Based on the Improved Ant Colony Optimization and A∗ Algorithm

Author:

Huang Zheng1,Zhai Xuefeng1,Wang Hongxing1,Zhou Hang2ORCID,Zhao Hongwei2ORCID,Feng Mingduan2

Affiliation:

1. Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China

2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

Abstract

At present, multirotor drones are restricted by the control accuracy and cannot position accurately according to the accuracy of point cloud data. Also, track planning in three-dimensional space is much more complicated than that in two-dimensional space, which means that existing track planning methods cannot achieve fast planning. Meanwhile, most existing researches were implemented in quasi-three-dimensional space with the shortest route length as the objective function and omitted environmental impacts. To overcome these, this paper uses the grid method to segment point cloud data of the flying space via ArcGIS software according to the drone’s controlling accuracy. It also extracts the grid coordinate information and maps it to a three-dimensional matrix to build the model accurately. This paper sets the minimal energy consumption as the objective function and builds a track planning model based on the drone’s performance and natural wind constraints. The improved ant colony optimization and A (ACO-A) algorithm are utilized to design this algorithm for a faster solution. That is, we use the improved ant colony optimization to quickly find a near-optimal track covering all viewpoints with the minimal energy consumption. The improved A algorithm will be used for local planning for adjacent tracks passing through obstacles. In the designed simulation environment, the simulation results show that, to ensure that the same components are shot, the improved algorithm in this paper can save 62.88% energy compared to that of the Shooting Manual of Drone Inspection Images for Overhead Transmission Lines. Also, it can save 9.33% energy compared to a track with the shortest route length. Besides, the ACO-A algorithm saves 96.6% time than the A algorithm.

Funder

Science and Technology Project of Jiangsu Frontier Electric Technology Co., Ltd.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3