VGLL4 Protects against Oxidized-LDL-Induced Endothelial Cell Dysfunction and Inflammation by Activating Hippo-YAP/TEAD1 Signaling Pathway

Author:

Xu Kaicheng1,Zhao Haomin2,Qiu Xiaolei2,Liu Xiwen2,Zhao Fucheng2,Zhao Yue2ORCID

Affiliation:

1. Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China

2. Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China

Abstract

Vestigial-like 4 (VGLL4) has been found to have multiple functions in tumor development; however, its role in cardiovascular disease is unknown. The aim of this study was to investigate the effect of VGLL4 on the dysfunction and inflammatory response of Ox-LDL-induced human umbilical vein endothelial cells (HUVECs) and its mechanism, so as to provide a new theoretical basis for the diagnosis and treatment of atherosclerosis. In the present study, the protective activity of VGLL4 inhibiting Ox-LDL-induced apoptosis, oxidative stress, inflammation, and injury as well as its molecular mechanisms was examined using human umbilical vein endothelial cells (HUVECs). The results showed that the expression of VGLL4 was decreased with the increase of Ox-LDL concentration in HUVECs. In addition, the functional study found that VGLL4 overexpression alleviated Ox-LDL-induced oxidative stress, inflammation, and dysfunction and inhibited apoptosis. Further research found that VGLL4 regulated Hippo-YAP/TEAD1 signaling pathway, and the Hippo-YAP/TEAD1 signaling pathway was involved in the protective mechanism of VGLL4 on HUVECs. In conclusion, it suggests that VGLL4 protects against oxidized-LDL-induced endothelial cell dysfunction by activating the Hippo-YAP/TEAD1 signaling pathway.

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Reference31 articles.

1. The immunology of atherosclerosis

2. Oxidative Stress in Atherosclerosis

3. Animal models of atherosclerosis

4. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement;I. J. Neeland;The Lancet Diabetes & Endocrinology,2019

5. VGLL4 Selectively Represses YAP-Dependent Gene Induction and Tumorigenic Phenotypes in Breast Cancer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3