Modeling Suicidality with Multimodal Impulsivity Characterization in Participants with Mental Health Disorder

Author:

Moukaddam Nidal1,Lamichhane Bishal2ORCID,Salas Ramiro134,Goodman Wayne1,Sabharwal Ashutosh2

Affiliation:

1. Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA

2. Electrical and Computer Engineering, Rice University, Houston, TX, USA

3. The Menninger Clinic, Houston, TX, USA

4. Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA

Abstract

Introduction. Suicide is one of the leading causes of death across different age groups. The persistence of suicidal ideation and the progression of suicidal ideations to action could be related to impulsivity, the tendency to act on urges with low temporal latency, and little forethought. Quantifying impulsivity could thus help suicidality estimation and risk assessments in ideation-to-action suicidality frameworks. Methods. To model suicidality with impulsivity quantification, we obtained questionnaires, behavioral tests, heart rate variability (HRV), and resting state functional magnetic resonance imaging measurements from 34 participants with mood disorders. The participants were categorized into three suicidality groups based on their Mini-International Neuropsychiatric Interview: none, low, and moderate to severe. Results. Questionnaire and HRV-based impulsivity measures were significantly different between the suicidality groups with higher subscales of impulsivity associated with higher suicidality. A multimodal system to characterize impulsivity objectively resulted in a classification accuracy of 96.77% in the three-class suicidality group prediction task. Conclusions. This study elucidates the relative sensitivity of various impulsivity measures in differentiating participants with suicidality and demonstrates suicidality prediction with high accuracy using a multimodal objective impulsivity characterization in participants with mood disorders.

Funder

McNair Foundation

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3