Infrared and Visible Image Fusion via Fast Approximate Bilateral Filter and Local Energy Characteristics

Author:

Li Zongping1,Lei Wenxin2,Li Xudong1,Liao Tingting1,Zhang Jianming2ORCID

Affiliation:

1. National Engineering Research Center of Sintering and Pelletizing Equipment System, Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, China

2. Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Image fusion is to effectively enhance the accuracy, stability, and comprehensiveness of information. Generally, infrared images lack enough background details to provide an accurate description of the target scene, while visible images are difficult to detect radiation under adverse conditions, such as low light. People hoped that the richness of image details can be improved by using effective fusion algorithms. In this paper, we propose an infrared and visible image fusion algorithm, aiming to overcome some common defects in the process of image fusion. Firstly, we use fast approximate bilateral filter to decompose the infrared image and visible image to obtain the small-scale layers, large-scale layer, and base layer. Then, the fused base layer is obtained based on local energy characteristics, which avoid information loss of traditional fusion rules. The fused small-scale layers are acquired by selecting the absolute maximum, and the fused large-scale layer is obtained by summation rule. Finally, the fused small-scale layers, large-scale layer, and base layer are merged to reconstruct the final fused image. Experimental results show that our method retains more detailed appearance information of the fused image and achieves good results in both qualitative and quantitative evaluations.

Funder

Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3