Research on the Reasonable Strengthening Time and Stability of Excavation Unloading Surrounding Rock of High-Stress Rock Mass

Author:

Xu Wensong12ORCID,Xu Wentao12,Cheng Yunhai12

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

2. School of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, China

Abstract

This study is aimed at better understanding the deformation and failure mechanism of surrounding rock during excavation unloading of a high-stress rock mass and determining the reasonable reinforcement time for the surrounding rock. To fulfill this aim, true triaxial tests were carried out on different loading and unloading paths during the unilateral unloading of a high-stress rock mass. The variational condition for minimization of plastic complementary energy is obtained, the optimal reinforcement time is determined, and the range of the plastic zone in the surrounding rock reinforced by anchor mesh-cable-grouting is compared and analyzed. The results are as follows: (1) Based on the Mohr-Coulomb yield criterion and the deformation reinforcement theory of surrounding rock, the stable state with the minimum reinforcement force is obtained. (2) After the true triaxial tests on the unilateral unloading of the third principal stress were carried out under different confining pressures, loading continued to be performed. Compared with rock failure without confining pressure, in the conventional uniaxial compression test, the failure of samples is dominated by composite splitting-shear failure; the unilateral unloading stress-concentration failure is a progressive failure process of splitting into plates followed by cutting into blocks and then the ejection of blocks and pieces. (3) The relationship between the time steps of the surrounding rock stability and the excavation distance is obtained. The supporting time can be divided into four stages: presupport stage, bolt reinforcement stage, anchor cable reinforcement stage, and grouting reinforcement stage. (4) In the range of within 5 m behind the tunneling face, the plastic zone of the surrounding rock with support is reduced by 7 m as compared with that with no support. In the range of over 5 m behind the tunneling face, the plastic zone of the roadway floor with support is reduced by 2.6 m as compared with that without support, and the deformation is reduced by 90%. These results can serve as a reference for controlling the behavior of surrounding rock during excavation unloading of high-stress rock masses.

Funder

Talent Fund of AUST

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Stability analysis and control measures of open roof roadway with hard roof;R. Yang;Journal of Mining and Safety Engineering,2020

2. Discrete element study on unloading dynamic failure mechanism of deep jointed rock mass excavation;B. Yingyun;Journal of Geotechnical Engineering,2020

3. Rosenblueth method in the evaluation of bolting and shotcrete support system of soft broken surrounding rock;S. Yonghua;Journal of Geotechnical Engineering,2004

4. Study on reasonable support scheme of high ground stress soft rock tunnel;T. Hongming;Journal of Rock Mechanics and Engineering,2011

5. Experimental study on reasonable support scheme of high ground stress soft rock tunnel;C. Xiaoping;Journal of railway engineering,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3