Theoretical and Numerical Analysis of Coupled Axial-Torsional Nonlinear Vibration of Drill Strings

Author:

Li Xinye1ORCID,Yu Tao1ORCID,Zhang Lijuan2,Zeng Hao1,Duan Congcong1

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

2. School of Automobile and Transportation, Tianjin University of Technology and Education, Tianjin 300222, China

Abstract

Based on a lumped parameter model with two degrees of freedom, the periodic response of the coupled axial-torsional nonlinear vibration of drill strings is studied by HB-AFT (harmonic balance and alternating frequency/time domain) method and numerical simulations. The amplitude-frequency characteristic curves of axial relative displacement and torsional relative angular velocity are given to reveal the mechanism of bit bounce and stick-slip motion. The stability of periodic response is analyzed by Floquet theory, and the boundary conditions of bifurcation of periodic response are given when parameters such as nominal drilling pressure, angular velocity of turntable, and formation stiffness are varied. The results show that the amplitude of the periodic response of the system precipitates a spontaneous jump and Hopf bifurcation may occur when the angular velocity of the turntable is varied. The variation of parameters may lead to the complex dynamic behavior of the system, such as period-doubling motion, quasiperiodic motion, and chaos. Bit bounce and stick-slip phenomenon can be effectively suppressed by varying the angular velocity of turntable and nominal drilling pressure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of operating conditions in nonlinear vibration of a drill-string;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2024-05-24

2. Parameter design of double-circular-arc tooth profile and its influence on meshing characteristics of harmonic drive;Mechanism and Machine Theory;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3