Water Inrush Risk Assessment Based on AHP and Advance Forecast Approach: A Case Study in the Micangshan Tunnel

Author:

Song Tao12ORCID,Zeng Jun12ORCID,Ma Jiaji12ORCID,Ma Chunchi12ORCID,Li Tianbin12ORCID,Xia Tao3ORCID

Affiliation:

1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China

2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China

3. The Civil Engineering Group Corporation of China Construction Second Engineering Bureau Ltd., Beijing, China

Abstract

Water inrush is a serious geological disaster in tunnel. For the effective prevention and control of the occurrence of water inrush, a static-dynamic water inrush risk assessment method is proposed by considering the Micangshan tunnel as an example. First, four possible types of water inrush phenomenon are identified based on the geological and hydrogeological conditions of the tunnel: water inrush in water-bearing cracks, fault fracture zones, karst pipelines, and karst caves. Next, evaluation indexes that affect water inrush are determined. By combining the index weight value calculated by analytic hierarchy process (AHP) with the index quantitative value, the static water inrush disaster evaluation model is established, which provides a basis for tunnel design. Finally, with the combination of the static evaluation model and advanced forecast method, a dynamic risk prediction method of water inrush is established, which provides guidance for safe construction. The results confirm that the proposed method is a reliable theoretical basis for early assessment and prediction of tunnel water inrush disasters.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3