Influence of Caprock Morphology on Solubility Trapping during CO2 Geological Sequestration

Author:

Punnam Pradeep Reddy1ORCID,Krishnamurthy Balaji1ORCID,Surasani Vikranth Kumar1ORCID

Affiliation:

1. Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, 500078, Hyderabad, India

Abstract

Carbon capture and sequestration (CCS) technology is one of the indispensable alternatives to reduce carbon dioxide (CO2) emissions. In this technology, carbon capture and transport grid will send CO2 to the storage facilities that are using various storage techniques. Geologic carbon sequestration (GCS) is one such storage technique where CO2 is injected into a deep geological subsurface formation. The injected CO2 is permanently stored in the formation due to structural, residual, solubility, and mineral trapping phenomena. Among different trapping mechanisms, solubility trapping plays a significant role in the safe operation of GCS. In this work, the study is conducted to elucidate the influence of top surface caprock morphology on the solubility trapping mechanism. The simulation results show that the naturally available heterogeneous formations with anticline and without anticline structure influence the solubility fingering phenomena and solubility entrapment percentage over a geological time scale. The lateral migration and sweeping efficiency results of both the synthetic domains for the injected CO2 have shown the importance of caprock morphology on solubility trapping and selection of injection rate. Quantification of solubility trapping in two morphological structures revealed that the synthetic domain without anticline morphology had shown higher solubility trapping. In the future, the simulation data using Artificial Neural Networks can be applied to predict the structural and solubility trapping of geological formations. This analysis further helps incorporating the interaction of CO2 with porous media leading to a mineral trapping mechanism.

Funder

Science and Engineering Research Board (SERB), India

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3