Aster glehniExtract Containing Caffeoylquinic Compounds Protects Human Keratinocytes through the TRPV4-PPARδ-AMPK Pathway

Author:

Lee Yong-Jik1ORCID,Jang Yoo-Na1,Han Yoon-Mi1,Kim Hyun-Min12,Jin Changbae3ORCID,Kim Hyoung Ja3ORCID,Seo Hong Seog12ORCID

Affiliation:

1. Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea

2. Department of Medical Science, Korea University College of Medicine (BK21 Plus KUMS Graduate Program), Main building 6F Room 655. 73, Inchon-ro (Anam-dong 5-ga), Seongbuk-gu, Seoul 136-705, Republic of Korea

3. Molecular Recognition Research Center, Materials and Life Science Research Division, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791, Republic of Korea

Abstract

Aster glehni(AG) has been used in cooking and as a medicine to treat various diseases for over hundreds of years in Korea. To speculate the protective effects of AG on skin barrier, we estimated the protein levels of biomarkers related to skin barrier protection in human keratinocytes, HaCaT cells treated with sodium dodecyl sulfate (SDS), or 2,4-dinitrochlorobenzene (DNCB). The protein levels for keratin, involucrin, defensin, tumor necrosis factor alpha (TNFα), peroxisome proliferator-activated receptor delta (PPARδ), 5′ adenosine monophosphate-activated protein kinase (AMPK), serine palmitoyltransferase long chain base subunit 2 (SPTLC2), and transient receptor potential cation channel subfamily V member 4 (TRPV4) were evaluated using western blotting or immunocytochemistry in HaCaT cells. AG extract increased the protein levels of PPARδ, phosphorylated AMPK, SPTLC2, keratin, involucrin, and defensin compared to the SDS or DNCB control group. However, TNFαexpression increased by SDS or DNCB was decreased with AG extract. The order of action of each regulatory biomarker in AG pathway was identified TRPV4→PPARδ→AMPK from antagonist and siRNA treatment studies. AG can ameliorate the injury of keratinocytes caused by SDS or DNCB through the sequential regulation of TRPV4→PPARδ→AMPK pathway.

Funder

Korea Institute of Science and Technology

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3