Ehretia Species Phytoconstituents as Potential Lead Compounds against Klebsiella pneumoniae Carbapenemase: A Computational Approach

Author:

Oselusi Samson O.12ORCID,Sibuyi Nicole R. S.2ORCID,Meyer Mervin2ORCID,Madiehe Abram M.12ORCID

Affiliation:

1. Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa

2. DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa

Abstract

The evolution of antibiotic-resistant carbapenemase has negatively impacted the management of critical healthcare-associated infections. K. pneumoniae carbapenemase-2- (KPC-2-) expressing bacteria have developed resistance to conventional therapeutic options, including those used as a last resort for life-threatening diseases. In this study, Ehretia species phytoconstituents were screened for their potential to inhibit KPC-2 protein using in silico approaches. Molecular docking was used to identify strong KPC-2 protein binding phytoconstituents retrieved from the literature. The best-docked conformation of the ligands was selected based on their glide energy and binding interactions. To determine their binding free energies, these hit compounds were subjected to molecular mechanics with generalized born and surface area (MM-GBSA) in the PRIME module. Pharmacological assessments of the ligands were performed to evaluate their drug-likeness. Molecular dynamic (MD) simulations were used to analyze the conformational stability of the selected druglike compounds within the active site of the KPC-2 protein. Overall, a total of 69 phytoconstituents were compiled from the literature. Fourteen of these compounds exhibited a stronger binding affinity for the protein target than the reference drugs. Four of these top hit compounds, DB09, DB12, DB28, and DB66, revealed the highest efficacy in terms of drug-likeness properties. The MD simulation established that among the druglike compounds, DB66 attained stable conformations after 150 ns simulation in the active site of the protein. We concluded that DB66 from Ehretia species could play a significant role in therapeutic efforts against KPC-2-expressing bacteria.

Funder

SANLiC Gold

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3