Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy

Author:

Campos Estefânia V. R.12ORCID,Proença Patrícia L. F.3ORCID,da Costa Tais G.4ORCID,de Lima Renata4ORCID,Fraceto Leonardo F.3ORCID,de Araujo Daniele R.12ORCID

Affiliation:

1. Human and Natural and Sciences Center, Federal University of ABC, Santo André, SP, Brazil

2. Drugs and Bioactives Delivery Systems Research Group-SISLIBIO, Federal University of ABC, Brazil

3. São Paulo State University (UNESP), Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba, Sorocaba, SP, Brazil

4. LABiToN (Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials), University of Sorocaba, Sorocaba, SP, Brazil

Abstract

Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380 ± 4  nm, positive zeta potential after coating with chitosan ( 23.3 ± 1.7  mV), and high encapsulation efficiency ( 96.7 ± 0.02 % ). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3