Affiliation:
1. Beijing Polytechnic, Beijing 100176, China
Abstract
The vast majority of currently available kernelized correlation filter (KCF)-based trackers simply make use of a single object feature to define the object of interest. It is impossible to avoid tracking instability while working with a wide variety of complex videos. In this piece of research, an ensemble learning-based multi-cues fusion object tracking method is offered as a potential solution to the issue at hand. Using ensemble learning to train multiple kernelized correlation filters with different features in order to obtain the optimal tracking parameters is the primary concept behind the improved KCF-based tracking algorithm. After that, the peak side lobe ratio and the response consistency of two adjacent frames are used to obtain the fusion weight. In addition, an adaptive weighted fusion technique is applied in order to combine the response findings in order to finish the location estimation; finally, the tracking confidence is applied in order to update the tracking model in order to prevent model deterioration. In order to increase the adaptability of the revised algorithm to size-change, a Bayesian estimate model based on scale pyramid has been presented. This model is able to determine the optimal scale of the object, which is the goal of this endeavor. The tracking results of a number of different benchmark movies demonstrate that the algorithm that we have suggested is able to effectively eliminate the effects of interference elements, and that its overall performance is superior to that of the comparison algorithms.
Funder
Beijing Polytechnic College
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献