Walk-Through Corrosion Assessment of Slurry Pipeline Using Machine Learning

Author:

Dia Abdou Khadir1ORCID,Bosca Axel Gambou2,Ghazzali Nadia1

Affiliation:

1. Université du Québec à Trois-Rivières, Department of Mathematics and Computer Science, Trois-Rivières, Canada

2. Québec Metallurgy Center, Trois-Rivières, Canada

Abstract

The study of pipeline corrosion is crucial to prevent economic losses, environmental degradation, and worker safety. In this study, several machine learning methods such as recursive feature elimination (RFE), principal component analysis (PCA), gradient boosting method (GBM), support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), and multilayer perceptron (MLP) were used to estimate the thickness loss of a slurry pipeline subjected to erosion corrosion. These different machine learning models were applied to the raw data (the set of variables), to the variables selected by RFE, and to the variables selected by PCA (principal components), and a comparative analysis was carried out to find out the influence of the selection and transformation of the data on the performance of the models. The results show that the models perform better on the variables selected by RFE and that the best models are RF, SVM, and GBM with an average RMSE of 0.017. By modifying the hyperparameters, the SVM model becomes the best model with an RMSE of 0.011 and an R-squared of 0.83.

Funder

Québec Fonds de Recherche Nature et Technologies

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3