Amino Acid-Mediated Metabolism: A New Power to Influence Properties of Stem Cells

Author:

Liu Jilan1,Qin Xianyun1ORCID,Pan Dongfeng2,Zhang Bin3ORCID,Jin Feng24ORCID

Affiliation:

1. Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China

2. Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA

3. Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China

4. Department of Neurosurgery, Affiliated Hospital of Jining Medical University & Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, Shandong 272029, China

Abstract

The self-renewal and differentiation potentials of stem cells are dependent on amino acid (AA) metabolism. We review the literature on the metabolic preference of both cancer and noncancer stem cells. The balance in AA metabolism is responsible for maintaining the functionality of noncancer stem cells, and altering the levels of AAs can influence the malignant biological behavior of cancer stem cells. AAs are considered nutrients participating in metabolism and playing a critical role in maintaining the activity of normal stem cells and the effect of therapy of cancer stem cells. Targeting AA metabolism helps inhibit the stemness of cancer stem cells and remodels the function of normal stem cells. This review summarizes the metabolic characteristics and regulation pathways of AA in different stem cells, not only from the nutritional perspective but also from the genomic perspective that have been reported in the recent five years. In addition, we briefly survey new therapeutic modalities that may help eradicate cancer stem cells by exploiting nutrient deprivation. Understanding AA uptake characteristics helps researchers define the preference for AA in different stem cells and enables clinicians make timely interventions to specifically target the cell behavior.

Funder

Tai Shan Young Scholar Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3