Prediction of Labor Induction Success from the Uterine Electrohysterogram

Author:

Benalcazar-Parra Carlos1,Ye-Lin Yiyao1,Garcia-Casado Javier1ORCID,Monfort-Ortiz Rogelio2,Alberola-Rubio Jose2,Perales Alfredo23,Prats-Boluda Gema1ORCID

Affiliation:

1. Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, 46022 Valencia, Spain

2. Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe de Valencia, Av. Fernando Abril Martorell 106, Edificio F, 3ª Planta, Valencia, Spain

3. Departamento de Pediatría, Obstetricia y Ginecología Universidad Valencia, Av Blasco Ibañez 15, 46010 Valencia, Spain

Abstract

Pharmacological agents are often used to induce labor. Failed inductions are associated with unnecessarily long waits and greater maternal-fetal risks, as well as higher costs. No reliable models are currently able to predict the induction outcome from common obstetric data (area under the ROC curve (AUC) between 0.6 and 0.7). The aim of this study was to design an early success-predictor system by extracting temporal, spectral, and complexity parameters from the uterine electromyogram (electrohysterogram (EHG)). Different types of feature sets were used to design and train artificial neural networks: Set_1: obstetrical features, Set_2: EHG features, and Set_3: EHG+obstetrical features. Predictor systems were built to classify three scenarios: (1) induced women who reached active phase of labor (APL) vs. women who did not achieve APL (non-APL), (2) APL and vaginal delivery vs. APL and cesarean section delivery, and (3) vaginal vs. cesarean delivery. For Scenario 3, we also proposed 2-step predictor systems consisting of the cascading predictor systems from Scenarios 1 and 2. EHG features outperformed traditional obstetrical features in all the scenarios. Little improvement was obtained by combining them (Set_3). The results show that the EHG can potentially be used to predict successful labor induction and outperforms the traditional obstetric features. Clinical use of this prediction system would help to improve maternal-fetal well-being and optimize hospital resources.

Funder

Bial S.A

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3