Geotechnical Aspects of Explosive Compaction

Author:

Shakeran Mahdi1ORCID,Eslami Abolfazl1ORCID,Ahmadpour Majid2

Affiliation:

1. Civil and Environmental Engineering Department, Amirkabir University of Technology, Tehran, Iran

2. Faculty of Art and Architecture, Mazandaran University, Babolsar, Iran

Abstract

Explosive Compaction (EC) is the ground modification technique whereby the energy released from setting off explosives in subsoil inducing artificial earthquake effects, which compact the soil layers. The efficiency of EC predominantly depends on the soil profile, grain size distribution, initial status, and the intensity of energy applied to the soil. In this paper, in order to investigate the geotechnical aspects, which play an important role in performance of EC, a database has been compiled from thirteen-field tests or construction sites around the world, where EC has been successfully applied for modifying soil. This research focuses on evaluation of grain size distribution and initial stability status of deposits besides changes of soil penetration resistance due to EC. Results indicated suitable EC performance for unstable and liquefiable deposits having particle sizes ranging from gravel to silty sand with less than 40% silt content and less than 10% clay content. However, EC is most effective in fine-to-medium sands with a fine content less than 5% and hydraulically deposited with initial relative density ranging from 30% to 60%. Moreover, it has been observed that EC can be an effective method to improve the density, stability, and resistance of the target soils.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference24 articles.

1. Densification of Pond Ash by Blasting

2. Geotechnical Special Publication no. 40,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3